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Investigation on the Characteristics of the
Envelope FDTD Based on the
Alternating Direction Implicit Scheme

Saehoon Ju, Student Member, |EEE, Kyung-Young Jung, and Hyeongdong Kim, Member, |EEE

Abstract—T his letter presents numerical characteristics of re-
cently developed the envelope FDTD based on the alternating di-
rection implicit scheme (envelope ADI-FDTD). Through numerical
simulations, it is shown that the envelope ADI-FDTD is uncondi-
tionally stable and we can get better dispersion accuracy than the
traditional ADI-FDTD by analyzingtheenvelopeof thesignal. This
fact gives the opportunity to extend the temporal step size to the
Nyquist limit in certain cases. Numerical results show that the en-
velope ADI-FDTD can beused asan efficient electromagnetic anal-
ysistool especially in the singlefrequency or band limited systems.

Index Terms—ADI technique, dispersion, envelope FDTD.

I. INTRODUCTION

ECAUSE of the simplicity of programming and the capa-
bility of easy modeling for various el ectromagnetic mate-
rials and structures, the finite-difference time-domain (FDTD)
method is so popular in the electromagnetics community [1].
In aFDTD calculation, the temporal step size must be smaller
than or equal to the Courant-Friedrich-Levy (CFL) bound to
guarantee the numerical stability. Thiscondition restrictsthe ap-
plicability of the method especialy in the case where the fine
spatia grid relative to the wavelength is used to resolve fine
geometrical features, since a fine spatial grid means the small
temporal step size and an increase in computation time.
Recently, to overcome the limit of the CFL constraint, the al-
ternating direction implicit algorithm (ADI) has been success-
fully applied to the FDTD method and leads to the uncondi-
tionaly stable ADI-FDTD method [2]{3]. It was reported that
the ADI-FDTD has the potential to considerably reduce the
number of time iterations used in the simulation. However, the
ADI-FDTD is more efficient when the problem of interest re-
quires high mesh resolution and/or high cell aspect-ratio[4], be-
cause its numerical accuracy decreases rapidly as the temporal
step size increases. That is, athough the temporal step size in
ADI-FDTD is free from the stability constraint, we cannot ex-
tend thetemporal step sizetothe Nyquist limit eveninanalyzing
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continuouswave (CW). Thisisbecause thetemporal step size of
ADI-FDTD is still bounded by the modeling accuracy. To im-
prove the modeling accuracy of the conventional ADI-FDTD,
the envelope ADI-FDTD has been developed by Rao et al. [5].
In the reference, the numerical results show that the envelope
ADI-FDTD can be used as an efficient electromagnetic anal-
ysis toal.

In this letter, we present numerical stability and numerical
dispersion through numerical test to demonstrate the charac-
teristics of the envelope ADI-FDTD. The envelope ADI-FDTD
modeling results for the two-dimensional (2-D) TM wave have
been obtained to compareits numerical dispersion with those of
traditional ADI-FDTD and FDTD. The purpose of this paper is
to introduce the envelope ADI-FDTD formulation and discuss
numerical stability and dispersion characteristic of the method.

Il. CHARACTERISTICS OF THE ENVELOPE ADI-FDTD

Let us consider the governing equation for the envelope of
electromagnetic quantities. Maxwell’ s curl equationsfor theen-
velope of electromagnetic fields in linear, isotropic, lossless,
nondispersive media are given in the differential form by

<% + 1w0E> =V x H (1.a)
ot
<aa_121 + 1w0H> =_VxE, (1.b)

wheree, i arethe permittivity, permeability and wo denotesthe
carrier frequency. E and H aretheenvel opesignal of theelectric
field and the magnetic field, respectively. Asinthe ADI-FDTD
[2]{3], the envelope ADI-FDTD [5] aso uses the ADI ago-
rithm for time-marching scheme rather than the leap-frog al-
gorithm of the conventional FDTD to circumvent the stability
congtraint. In the ADI algorithm, the envelope signals of all the
field components are evaluated by two sub-iterations to get the
one time step response. Due to the limited space, the equations
for the envelope of x-directed electric field and magnetic field,
E, and H,, are presented below.

* First iteration:
OE, " 9H, ™ oH,
< ot ol ) “ oy | “o.| @
/4 /2 n
o (egoon,)| = 2B T
at az dy
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» Second iteration:

OF n+3/4 OH n+1/2 OH. n+1
T . o z _ Y
(33)
OH n+3/4 OF n+1/2 OF n+1
z . o y - z
(3b)

The superscript in (2) and (3) denotes a mapping point of the
discrete time space. In the derivation of a set of implicit differ-
ence equations, it does not matter if we modify (2a) and (3a) of
the envelope of electric fields or (2b) and (3b) of the envelope
of magnetic fields. Here, following the procedure in by Zheng
et al. [3], the envelopes of magnetic fields at (n + 1/2) time
of the right-hand side in (2a) and (3a) are replaced by the cor-
responding magnetic field update equation at (n + 1/2) time.
This leads following implicit equations for the envelope of £,
in each subiteration:

* Firstiteration a (n + 1/2) time:

2Cy Dy nt1/2 CyDy nt1/2
[1 (Ay)2 Ex[”'l/&j:k B (Ay)2 Ew[i+1/2,j+1,k
CoDy o nt1/2 n
" (Ay)? Eelitiojo1p = Co Baliyaya i
CyDq n D, n
+ —Ay Hz[i+1/2,j+1/27k - —Ay Hzli+1/2,j—1/2,k
Cy /o n
Az (Hy[i“/?:ﬂ':kﬂ/? - Hyli+1/2,j,k—1/2)
Cy Dy n .
- AyAzx (Ey[i+1zi+1/2,k N Ey[vi,j+1/2,k)
Cy Dy " N
* AyAz (Ey[i+1yj—1/2,k - Ey[i,j—1/2,k) : 4
» Second iteration at (n + 1) time:
2C, D, n+1 CyD, Rl
T (Az)? Eelivyyzin = (A2)? Bolivi/2 41
CoDy n+1 nt1/2
- (A7) Ew[7‘,+1/2,j,k—1 =C, Ea:[i+1/27j7k
CbDa, n+1/2 CbDa n+1/2
v Hy[7‘,+1/2,j,k+1/2 As I—Iy[71_1_1/2”,7]“_1/2
Gy n+1/2 n+1/2
+ Ay (H’Zli+1/27j+1/2,k - HZ[i+1/2,j71/2,k)
Cy Dy JoRank nt1/2
- AzAz ( Z[i+17j7k+1/2 - "[i,j,k-l—l/Q)
Cy Dy n+1/2 n+1/2
AzAzx (Ezli+1yj:k*1/2 - Ezli,j,k71/2> ®)
where
o = We—gwedt) . (Q2AYH
7 (4e + jwoeAt)’ b (de + jwoe At)
(dp — jwopAt) (2At)
D(l = T . AL Db =
(4 + jwopt) (40 + jwopAt)

and theinteger ¢, 7, & indicate that the corresponding basisfunc-
tionislocated at x = iAz, y = jAy, z = kAz in the spa
tial grid. The envelope signals of electromagnetic field com-
ponents are located on the same spatial grid as that of the tra-
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Fig. 1. Normalized numerical phase velocity of the envelope ADI-FDTD with
different carrier frequencies (a) wo = 0, (b) wg = 27¢, and (C) wy = 3we. The
reference curve of the traditional FDTD is obtained with CFLN = 1. The
wave-propagation angle of solid linesis 0° and that of dotted linesis 45°.
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ditional FDTD. After updating the envliope signals of electric
field components implicitly, those of magnetic fields compo-
nents can be calculaed fully explicitly from the updated those
of electric fields and previous values. Note that if the carrier
frequency, wy, is zero, (2)—(5) are the same as those of the tra-
ditional ADI-FDTD [3].

The unconditional stability of the envelope ADI-FDTD can
be demonstrated by a similar procedure described in [6]. In the
envelope ADI-FDTD, the relationship for then and n + 1 time
steps between the envelope of field components in the spectral
domain can be summarized in a matrix form

X"t = AXT (6)

where the vector X denotes the envelope signals of six electro-
magnetic field componentsin the spectral domain, i.e., X! =
[Ertt fgrtt]Tand Xn = [En A7), where the super-
script 7 denotes the matrix transpose. To verify the uncondi-
tional stability of the envelope ADI-FDTD independently of the
carrier frequency wg, we have obtained eigenvalues of matrix A
with various values of the carrier frequency wq and the time step
At. Inthiswork, the eigenvalues of A was obtained numerically
[7] because of the difficulty for getting the analytical solution. It
was found that the absol ute val ues of computed eigenvalues are
equal to unity and the envelope ADI-FDTD is unconditionally
stable. It should be mentioned that the selected values of carrier
frequency wq range between zero and 1/(2At), and the eigen-
values are less than unity if the material has aloss.

Next, we demonstrate the numerical dispersion characteristic
of theenvelope ADI-FDTD. For the sake of comparison with the
results of the traditional ADI-FDTD and FDTD by Namiki and
Ito[8], we simulated aline current sourceradiating in free-space
for 2-D TM case. There are four observation points separated
from the line current source. Two points are located in the axial
direction (thewave-propagation angleis0° or 90°) and the other
points are placed in the diagonal direction (the wave-propaga-
tion angle is 45°). At the four observation points, to get the
numerical phase velocity, the values of the electric fields are
stored in time domain. Then we can calculate the numerical
propagation constant, /3, in the Fourier domain (or phasor do-
main) [1], [8]. Fig. 1 shows the normalized numerical phase
velocity, o, = w/(Bc), of the envelope ADI-FDTD with dif-
ferent carrier frequencies, i.e., wy = 0, 27e, 3we, where CFLN
is defined as the ratio of the time step used in the simulation
to the CFL stability limit of the traditional FDTD (CFLN =
At/Atcrr). Square grid is used for all the cases with A =
Az = Ay = A/100. Fig. 1(a) shows that numerical phase ve-
locity of envelope ADI-FDTD is the same as that of the con-
ventional ADI-FDTD [8] because the modulation frequency wo
is zero and then modeled quantity is not the envelope of the
field but the field itself. The discrepancy between solid lines

(the wave-propagation angle is 0° or 90°) and dot lines (the
wave-propagation angleis45°) denotes anisotropy of numerical
waves in the computational lattice. In the envelope ADI-FDTD,
the dispersion accuracy degrades rapidly around wq as the time
step increases. This comes from analyzing the slow-varying en-
velope of electromagnetic fields in the envelope ADI-FDTD.
Therefore, we can make the numerical phase velocity compa-
rable to the physical phase velocity even in higher frequency
region by selecting the carrier frequency appropriately. In sum-
mary, the envelope ADI-FDTD improves numerical accuracy in
higher frequency region by analyzing only the envelope of the
fields. Inthe analysis of the electrically fine geometry, the enve-
lope ADI-FDTD can be used efficiently because the simulation
time step can be further increased while guaranteeing compa-
rable numerical accuracy. Therefore, especially in getting sinu-
soidal steady state response or bandwidth limited response, the
envelope ADI-FDTD can efficiently reduce the computational
burden.

I11. CONCLUSION

In this work, the numerical characteristics of the envelope
ADI-FDTD are investigated. The envelope ADI-FDTD is un-
conditionally stable and can provide more accurate dispersion
accuracy evenin higher frequency region. Theresultsimply that
the method can be used as an efficient analysis method espe-
cialy inthe single frequency or band limited systems of electri-
caly very fine geometry.
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